
Learning Cost Benefit Trade-offs

Tim Menzies
�

University of British Columbia, Canada
tim@menzies.com

Martin S. Feather
�

Jet Propulsion Laboratory, USA
Martin.S.Feather@Jpl.Nasa.Gov

March 5, 2002

1 Introduction

The more we know about software costs and benefits, the
more precisely we can analyze the trade-offs between op-
tions in a software project. Sadly, in the usual case, pre-
cise knowledge is absent and analysts must make do with
what little information is known. But how bad can that
be? That is, how little information can we have and still
be able to make some definite conclusions?

Our experience has been that, in early lifecycle, the en-
tire space of options is known. What is unknown, how-
ever, is the domain knowledge that restricts that space.
For example, while we might not predict exactly the lines
of code in the system we are building, we can offer upper
and lower bounds on that size.

For some years now, we have been exploring early life-
cycle cost-benefit choices that surveys and summarizes
this space of options. Our method uses the following tech-
niques:

� Disjunctive modelling: In disjunctive modelling,
when we don’t know, we include the whole range
as possible values for a variable.� Monte Carlo simulation: Simulators are built which,
when accessing a variable for the first time, selects
and caches a random value from the possible range.
If that variable is ever accessed twice, then the cache
is used to return the same value as selected early in
the simulation.

1Lane Department of Computer Science, University of West Vir-
ginia, PO Box 6109, Morgantown, WV, 26506-6109, USA http:
//tim.menzies.com.

2Jet Propulsion Laboratory, USA California Institute of Technology,
4800 Oak Grove Dr, Pasadena CA 91109-8099

� Machine learning to summaries the simulations: The
Monte Carlo simulations generate too much data for
a human analyst to read and understand. Machine
learners can automatically find the smallest number
of variables that most influence the outcome of the
model.

In the best case, the machine learner finds emergent sta-
ble conclusions from within the space of possible behav-
iors. In the worst case, no such stable conclusions exist
and the learnt summaries will not be enlightening. This
worst case result has yet to be seen, and we have theo-
retical reasons for believing that, on average, we should
expect to find a small number of variables that control the
larger space of all options [9, 12]. For some years now,
we have repeatedly observed a curious narrow funnel ef-
fect. In many domains, it has been observed that a small
number of critical variables control the remaining vari-
ables within a system, the metaphor being that all pro-
cessing runs down the same narrow funnel [10]. The con-
cept of narrow funnels has been reported in many domains
under a variety of names including: master-variables in
scheduling [1]; prime-implicants in fault-tree analysis [6];
the dominance filtering used in Pareto optimization of
designs [5]; and the base controversial assumptions of
HT4 [8]. Whatever the name, the core intuition in all
these terms is the same: what happens in the total space
of a system can be controlled by a small critical region.
Where the narrow funnel effect exists, the space of op-
tions within a large space reduces to just the range of a
few variables within the narrow funnel.

The rest of this paper offers case studies with this tech-
nique for assessing the cost and benefits of early life cycle
software project options. Two machine learning summa-

current
situation

proposed
changes

prec = 0..5 precedentness 0, 1
flex = 0..5 development flexibility 1, 2, 3, 4 1
resl = 0..5 risk resolution 0, 1, 2 2
team = 0..5 team cohesion 1, 2 2
pmat = 0..5 process maturity 0, 1, 2, 3 3
rely = 0..4 required reliability 4
data = 1..4 database size 2
cplx = 0..5 product complexity 4, 5
ruse = 1..5 level of reuse 1, 2, 3 3
docu = 0..4 doco requirements 1, 2, 3 3
time = 2..5 runtime constraints ?
stor = 2..5 main memory storage 2, 3, 4 2
pvol = 1..4 platform volatility 1
acap = 0..4 analyst capability 1, 2 2
pcap = 0..4 programmer capability 2
pcon = 0..4 programmer continuity 1, 2 2
aexp = 0..4 analyst experience 1, 2
pexp = 0..4 platform experience 2
ltex = 0..4 experience with tools 1, 2, 3 3
tool = 0..4 use of software tools 1, 2
site = 0..5 multi-site development 2
sced = 0..4 time before delivery 0, 1, 2 2

# of combinations= ��� ���	�

Figure 1: A NASA software project. Unknowns in the
current situation are shown as ranges or, in the case of
total lack of knowledge, a “?”.

rization methods will be shown: TARZAN, and its de-
scendant, TAR2.

2 Case Study 1: COCOMO II

Menzies & Sinsel explored a space of 54 million options
to find two key control variables [13]. In that application,
a COCOMO-based tool [7] was used to evaluate the risk
that a NASA software project would suffer from develop-
time overrun (that project is shown in Figure 1).

The tool used in that study required a guesstimate of
the source lines of code (SLOC) in the system and certain
internal tuning parameters which, ideally, are learnt from
historical data. Lacking such data, Menzies & Sinsel used
three guesses for SLOC and three sets of tunings which
they took from the literature.

In that study, feuding stakeholders proposed 11
changes to a project. Some of the project features were
unclear and, for those features, project managers could

Baseline: no what-ifs Baseline+ what-if acap=2

risk=high

risk=low

acap=3

acap=2
sced => 3

sced < 3
acap=1

ltex = 1

ltex = 2

risk=high

risk=low
acap = 2

sced => 3

sced < 3

0
10

3 2
0

10

1 1

Figure 2: TOP: A decision tree (left) and a pruned tree
(right) holding all branches that do not contradict acap=2.
BOTTOM: Number of branches to different risk classifi-
cation. Legend: =low risk =high risk.

only offer ranges for the required inputs to the COCOMO-
based tool. These ranges offered 2930 possible combina-
tions for the inputs. When combined with the other uncer-
tainties, this generated a space of 54 million possibilities
(
���
�����
���� *three guesses for SLOC * three tunings).

Faced with this overdose of possibilities, Menzies &
Sinsel performed 50,000 Monte Carlo simulations where
the inputs were taken from the 54 million possibilities. A
machine learning program generated decision trees from
the 50,000 runs. A tree query language called TARZAN
then swung through the learnt trees looking for the least
number of attribute ranges that had the biggest impact on
the overall software development risk.

TARZAN treated the learnt trees as a space of possi-
bilities within the logged behavior. TARZAN ran what-
if queries by pruning all branches in the learnt trees that
contradicted some what-if possibility. For example, if we
wonder “what-if acap=2”, then Figure 2, top left, would
be pruned to Figure 2, top right. This particular “what-if”
turns out to be a bad idea. The histograms in Figure 2,
bottom, show that this pruning drives us into a situation
where the ratio to low risk to high risk projects changes
from 3:2 to 1:1. That is, if acap=2, then we increase our
chances of a high-risk project.

Figure 3 shows some of the what-if queries conducted
over the trees learnt from the 50,000 runs. The baseline
risk profile is shown in cell A1 of Figure 3: prior to the
what-if queries, the learnt trees hold branches to 7,24,8

2

A B C

1 0
10
20

7 24 8

Baseline: no
what-ifs

w

0
10
20

7 21 6

Baseline+
what-if ltex=[3]

0
10
20

6 20 6

Baseline+
what-if

pmat=[3]

2 0
10
20

2 1 0

Baseline+
what-if

acap=[2] and
sced=[2]

0
10
20

6 17 5

Baseline+
what-if ltex=[3]
and pmat=[3]

0
10
20

2 0 0

Baseline+
what-if

acap=[2] and
ltex=[3] and

pmat=[3] and
sced=[2]

Figure 3: Number of branches to different risk classifi-
cations. Legend: =low risk =medium risk

=high risk.

low,medium,high risk projects respectively. Seven of the
proposed changes had little impact on the baseline. Of the
remaining four proposed changes, two are clearly supe-
rior. Cell A2 shows that that having moderately talented
analysts and no schedule pressure (acap=[2], sced=[2])
reduced the risk in this project nearly as much as any
other, larger subset. Exception: B2 applies actions to re-
move all branches to medium and high risk projects. Nev-
ertheless, Menzies & Sinsel recommended A2, not B2,
since A2 seemed to achieve most of what B2 can do, with
much less effort.

Note that Figure 3 takes �� th of a page to display and
shows the key factors that control the classifications of
54,000,000 possibilities. This astonishing reduction in the
argument space is consistent with the COCOMO-based
tool containing narrow funnels.

3 Case Study 2: JPL models

Analysts at the NASA Jet Propulsion Laboratory some-
times debate satellite design by building a semantic net-

work connecting design decisions to satellite require-
ments [2]. This network links faults and risk mitigation
actions that effect a tree of requirements written by the
stakeholders. Potential faults within a project are mod-
elled as influences on the edges between requirements.
Potential fixes are modelled as influences on the edges
between faults and requirements edges.

This kind of requirements analysis seeks to maximize
our coverage of the requirements while maximizing the
ways the actions reduce the impact of the faults and
minimizing the costs of the actions. Optimizing on all
these criteria is complicated by the interactions inside the
model. For example, in Figure 4, fault2 and require4
are inter-connected: if we cover require4 then that makes
fault2 more likely which, in turn, makes fault1 more likely
which reduces the contribution of require5 to require3.

The net can be executed by selecting actions and see-
ing what benefits results. One such network included 99
possible actions; i.e.
�������������� combinations of actions.
Note the black line, top-left, of Figure 5. All the dots
below this line were generated via 10,000 random selec-
tions of the decisions, and the collection of their associ-
ated costs and benefits. All the dots above this line rep-
resent high benefit, low cost projects found by the TAR2
machine learner [4] described in the appendix. In a result
consistent with funnel theory, the learner could search a
space of ��� ��� decisions to find 30 (out of 99) that crucially
effected the cost/benefit of the satellite. Note that this
means TAR2 also found 99-30=67 decisions that could
be ignored.

For comparison purposes, a genetic algorithm (GA)
was also applied to the Figure 5 domain [4]. The GA
also found decisions that generated high benefit, low cost
projects. However, each such GA solution commented on
every possible decisions and there was no apparent way
to ascertain which of these are the most critical decisions.
The TAR2 solution was deemed superior to the GA solu-
tion by the domain experts, since the TAR2 solution re-
quired just 30 actions.

4 Conclusion

Even when faced with incomplete information, it may still
be possible to find stable conclusions about cost-benefit
trade-offs.

3

require1 fault1

action1
require2

require4

require5

require3

1

0.3

0.9
- 0.3

- 0.1
1

action2

fault2

action3

1

1

fault3

0.4

0.4

0.9

action4

action5

1

1

1

- 0.1

Faces denote requirements;

Toolboxes denote actions;

Skulls denote faults;

Conjunctions are marked with one arc; e.g. re-
quire1 if require2 and require2.

Disjunctions are marked with two arcs; e.g. fault1
if fault2 or fault3.

Numbers denote impacts; e.g. action5 reduces the
contribution of fault3 to fault1, fault1 reduces
the impact of require5, and action1 reduces the
negative impact of fault1.

Oval denotes structures that are expressible in the
latest version of DDP (under construction).

Figure 4: Left: an DDP-style [3] software management oracle. Right: explanation of symbols.

0

50

100

150

200

250

300

400,000 700,000 1,000,000

B
en

ef
it

Cost

Figure 5: Results from the satellite domain. The dots be-
low the line show the initial output of the model: note
the very large spread in the costs and benefits. The dots
above the line show the final outputs of the model after 5
iterations of TAR2 learning.

APPENDIX: The TAR2 machine
learner

Classical machine learning (e.g. C4.5 [14]) can be applied
to learn implications between attribute ranges and results
(e.g.):

�! �#"%$'&(�*),+.-0/2131�46587:925<;>=?1�@BA>CD=.E�F3+	@

However, if applied to a non-trivial requirements inter-
action model a large number of such implications result.
Some form of summarization is required.

One way to do this is to study pairs of rules that lead
to different results and reporting the changes to attribute
ranges that change (e.g.) a 587:925<;>=?1�@BA>CD=.E�F3+	@ into a
-0=3GH;>=?1�@BA>CD=.EIFJ+.@ . TARZAN implemented such a search
as a post-processor to C4.5. TAR2 performs the same
search directly, without needing C4.5 [11]. Starting with
examples, TAR2 finds range settings that are highly asso-
ciated with some ”good” outcome (e.g -0=3GK;>=?1L@BA>CD=.EIF3+	@)
and not highly associated with some ”bad” outcome (e.g.
5M7:9M5N;>=?1�@BA>CD=.EIFJ+.@).

TAR2 outputs implications of the form (e.g.)

�O �#"%$P&Q�*) -RF3131TSVU	/XW�Y YM/IZ[W]\^=3CDF_S�9X=D=DWIY Y

where ”less” and ”more” are measures of the change in
the frequency of ”good” and ”bad” before and after ap-
plying

�` � and $a&b� to the examples. The set of

4

attribute ranges (
�! � and $'&(�) is called a treatment.

Such treatments are the constraints that TAR2 is propos-
ing on future actions in order to increase the chances of
less “bad” and more “good”.

References
[1] J. Crawford and A. Baker. Experimental results on the application

of satisfiability algorithms to scheduling problems. In AAAI ’94,
1994.

[2] M. Feather, S. Cornford, and T. Larson. Combining the best at-
tributes of qualitative and quantitative risk management tool sup-
port. In 15th IEEE International Conference on Automated Soft-
ware Engineering, Grenoble, France, pages 309–312, September
2000.

[3] M. Feather, H. In, J. Kiper, J. Kurtz, and T. Menzies. First con-
tract: Better, earlier decisions for software projects. In Submitted
to the ACM CIKM 2001: the Tenth International Conference on
Information and Knowledge Management, 2001. Available from
http://tim.menzies.com/pdf/01first.pdf.

[4] M. Feather and T. Menzies. Converging on the optimal attainment
of requirements. In RE’03 (submitted), 2002.

[5] J. Josephson, B. Chandrasekaran, M. Carroll, N. Iyer, B. Wasacz,
and G. Rizzoni. Exploration of large design spaces: an architecture
and preliminary results. In AAAI ’98, 1998. Available from http:
//www.cis.ohio-state.edu/˜jj/Explore.ps.

[6] R. Lutz and R. Woodhouse. Bi-directional analysis for certi-
fication of safety-critical software. In 1st International Soft-
ware Assurance Certification Conference (ISACC’99), 1999.
Available from http://www.cs.iastate.edu/˜rlutz/
publications/isacc99.ps.

[7] R. Madachy. Heuristic risk assessment using cost factors. IEEE
Software, 14(3):51–59, May 1997.

[8] T. Menzies and P. Compton. Applications of abduction: Hypoth-
esis testing of neuroendocrinological qualitative compartmental
models. Artificial Intelligence in Medicine, 10:145–175, 1997.
Available from http://tim.menzies.com/pdf/96aim.
pdf.

[9] T. Menzies and B. Cukic. Adequacy of limited testing for knowl-
edge based systems. International Journal on Artificial Intelli-
gence Tools (IJAIT), June 2000. Available from http://tim.
menzies.com/pdf/00ijait.pdf.

[10] T. Menzies, S. Easterbrook, B. Nuseibeh, and S. Waugh. An em-
pirical investigation of multiple viewpoint reasoning in require-
ments engineering. In RE ’99, 1999. Available from http:
//tim.menzies.com/pdf/99re.pdf.

[11] T. Menzies and Y. Hu. Reusing models for requirements engi-
neering. In First International Workshop on Model-based Re-
quirements Engineering, 2001. Available from http://tim.
menzies.com/pdf/01reusere.pdf.

[12] T. Menzies and Y. Hu. Just enough learning (of association rules).
In KDD’02 (submitted), 2002. Available from http://tim.
menzies.com/pdf/02tar2.pdf.

[13] T. Menzies and E. Sinsel. Practical large scale what-if queries:
Case studies with software risk assessment. In Proceedings ASE
2000, 2000. Available from http://tim.menzies.com/
pdf/00ase.pdf.

[14] R. Quinlan. Induction of decision trees. Machine Learning, 1:81–
106, 1986.

5

